A mathematical model for dorsal closure.

نویسندگان

  • Luís Almeida
  • Patrizia Bagnerini
  • Abderrahmane Habbal
  • Stéphane Noselli
  • Fanny Serman
چکیده

During embryogenesis, drosophila embryos undergo epithelial folding and unfolding, which leads to a hole in the dorsal epidermis, transiently covered by an extraembryonic tissue called the amnioserosa. Dorsal closure (DC) consists of the migration of lateral epidermis towards the midline, covering the amnioserosa. It has been extensively studied since numerous physical mechanisms and signaling pathways present in DC are conserved in other morphogenetic events and wound healing in many other species (including vertebrates). We present here a simple mathematical model for DC that involves a reduced number of parameters directly linked to the intensity of the forces in the presence and which is applicable to a wide range of geometries of the leading edge (LE). This model is a natural generalization of the very interesting model proposed in Hutson et al. (2003). Being based on an ordinary differential equation (ODE) approach, the previous model had the advantage of being even simpler, but this restricted significantly the variety of geometries that could be considered and thus the number of modified dorsal closures that could be studied. A partial differential equation (PDE) approach, as the one developed here, allows considering much more general situations that show up in genetically or physically perturbed embryos and whose study will be essential for a proper understanding of the different components of the DC process. Even for native embryos, our model has the advantage of being applicable since an early stages of DC when there is no antero-posterior symmetry (approximately verified only in the late phases of DC). We validate our model in a native setting and also test it further in embryos where the zipping force is perturbed through the expression of spastin (a microtubule severing protein). We obtain variations of the force coefficients that are consistent with what was previously described for this setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila dorsal closure: An orchestra of forces to zip shut the embryo

Dorsal closure, a late-embryogenesis process, consists in the sealing of an epidermal gap on the dorsal side of the Drosophila embryo. Because of its similarities with wound healing and neural tube closure in humans, it has been extensively studied in the last twenty years. The process requires the coordination of several force generating mechanisms, that together will zip shut the epidermis. R...

متن کامل

Multiple Forces Contribute to Cell Sheet Morphogenesis for Dorsal Closure in Drosophila

The molecular and cellular bases of cell shape change and movement during morphogenesis and wound healing are of intense interest and are only beginning to be understood. Here, we investigate the forces responsible for morphogenesis during dorsal closure with three approaches. First, we use real-time and time-lapsed laser confocal microscopy to follow actin dynamics and document cell shape chan...

متن کامل

Ion channels contribute to the regulation of cell sheet forces during Drosophila dorsal closure.

We demonstrate that ion channels contribute to the regulation of dorsal closure in Drosophila, a model system for cell sheet morphogenesis. We find that Ca(2+) is sufficient to cause cell contraction in dorsal closure tissues, as UV-mediated release of caged Ca(2+) leads to cell contraction. Furthermore, endogenous Ca(2+) fluxes correlate with cell contraction in the amnioserosa during closure,...

متن کامل

Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development.

Tissue dynamics during dorsal closure, a stage of Drosophila development, provide a model system for cell sheet morphogenesis and wound healing. Dorsal closure is characterized by complex cell sheet movements, driven by multiple tissue specific forces, which are coordinated in space, synchronized in time, and resilient to UV-laser perturbations. The mechanisms responsible for these attributes a...

متن کامل

Proposing A stochastic model for spread of corona virus dynamics in Nigeria

The emergence of corona virus (COVID-19) has create a great public concern as the outbreak is still ongoing and government are taking actions such as holiday extension, travel restriction, temporary closure of public work place, borders, schools, quarantine/isolation, social distancing and so on. To mitigate the spread, we proposed and analyzed a stochastic model for the continue spread of coro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 268 1  شماره 

صفحات  -

تاریخ انتشار 2011